This article is synchronized and updated to xLog by Mix Space
For the best browsing experience, it is recommended to visit the original link
https://www.do1e.cn/posts/citelab/GPUmonitor
Old Solution: Get nvidia-smi Output via SSH#
My previous front-end experience was limited to generating HTML with Python, so I configured a GPU monitoring solution on my small host:
- Use the ssh command to get the output of nvidia-smi and parse information such as memory usage from it.
- Get the user and command using the ps command based on the pid of the GPU-occupying process.
- Use Python to output the above information as markdown and convert it to HTML using Markdown.
- Configure cron to execute the above steps every minute and set the web root in nginx to the directory where the HTML is located.
The corresponding code is as follows:
# main.py
import subprocess
from copy import deepcopy
import json
from markdown import markdown
import time
from parse import parse, parse_proc
from gen_md import gen_md
num_gpus = {
"s1": 4,
"s2": 4,
"s3": 2,
"s4": 4,
"s5": 5,
}
def get1GPU(i, j):
cmd = ["ssh", "-o", "ConnectTimeout=2", f"s{i}", "nvidia-smi", f"-i {j}"]
try:
output = subprocess.check_output(cmd)
except subprocess.CalledProcessError as e:
return None, None
ts = int(time.time())
output = output.decode("utf-8")
ret = parse(output)
processes = deepcopy(ret["processes"])
ret["processes"] = []
for pid in processes:
cmd = [
"ssh",
f"s{i}",
"ps",
"-o",
"pid,user:30,command",
"--no-headers",
"-p",
pid[0],
]
output = subprocess.check_output(cmd)
output = output.decode("utf-8")
proc = parse_proc(output, pid[0])
ret["processes"].append(proc)
ret["processes"][-1]["pid"] = pid[0]
ret["processes"][-1]["used_mem"] = pid[1]
return ret, ts
def get_html(debug=False):
results = {}
for i in range(1, 6):
results_per_host = {}
for j in range(num_gpus[f"s{i}"]):
ret, ts = get1GPU(i, j)
if ret is None:
continue
results_per_host[f"GPU{j}"] = ret
results[f"s{i}"] = results_per_host
md = gen_md(results)
with open("html_template.html", "r") as f:
template = f.read()
html = markdown(md, extensions=["tables", "fenced_code"])
html = template.replace("{{html}}", html)
html = html.replace(
"{{update_time}}", time.strftime("%Y-%m-%d %H:%M", time.localtime())
)
if debug:
with open("results.json", "w") as f:
f.write(json.dumps(results, indent=2))
with open("results.md", "w", encoding="utf-8") as f:
f.write(md)
with open("index.html", "w", encoding="utf-8") as f:
f.write(html)
if __name__ == "__main__":
import sys
debug = False
if len(sys.argv) > 1 and sys.argv[1] == "debug":
debug = True
get_html(debug)
# parse.py
def parse(text: str) -> dict:
lines = text.split('\n')
used_mem = lines[9].split('|')[2].split('/')[0].strip()[:-3]
total_mem = lines[9].split('|')[2].split('/')[1].strip()[:-3]
temperature = lines[9].split('|')[1].split()[1].replace('C', '')
used_mem, total_mem, temperature = int(used_mem), int(total_mem), int(temperature)
processes = []
for i in range(18, len(lines) - 2):
line = lines[i]
if 'xorg/Xorg' in line:
continue
if 'gnome-shell' in line:
continue
pid = line.split()[4]
use = line.split()[7][:-3]
processes.append((pid, int(use)))
return {
'used_mem': used_mem,
'total_mem': total_mem,
'temperature': temperature,
'processes': processes
}
def parse_proc(text: str, pid: str) -> dict:
lines = text.split('\n')
for line in lines:
if not line:
continue
if line.split()[0] != pid:
continue
user = line.split()[1]
cmd = ' '.join(line.split()[2:])
return {
'user': user,
'cmd': cmd
}
# gen_md.py
def per_server(server: str, results: dict) -> str:
md = f'# {server}\n\n'
for gpu, ret in results.items():
used, total, temperature = ret['used_mem'], ret['total_mem'], ret['temperature']
md += f'<div class="oneGPU">\n'
md += f' <code>{gpu}: </code>\n'
md += f' <div class="g-container" style="display: inline-block;">\n'
md += f' <div class="g-progress" style="width: {used/total*100}%;"></div>\n'
md += f' </div>\n'
md += f' <code> {used:5d}/{total} MiB {temperature}℃</code>\n'
md += '</div>\n'
md += '\n'
if any([len(ret['processes']) > 0 for ret in results.values()]):
md += '\n| GPU | PID | User | Command | GPU Usage |\n'
md += '| --- | --- | --- | --- | --- |\n'
for gpu, ret in results.items():
for proc in ret['processes']:
md += f'| {gpu} | {proc["pid"]} | {proc["user"]} | {proc["cmd"]} | {proc["used_mem"]} MB |\n'
md += '\n\n'
return md
def gen_md(results: dict) -> dict:
md = ''
for server, ret in results.items():
md += per_server(server, ret)
return md
This solution has several obvious drawbacks, such as low update frequency and complete reliance on back-end updates, continuously refreshing data regardless of whether anyone is visiting.
New Solution: Front-end and Back-end Separation#
I have always wanted to implement a front-end and back-end separated GPU monitoring system, running a fastapi on each server that returns the required data upon request. The recently developed Nan Na Charging gave me the confidence to develop a front-end that fetches data from the API and renders it on the page.
FastAPI Back-end#
Recently, I accidentally discovered that nvitop supports Python calls, I had always thought it could only visualize data through commands.
Great, this makes it much easier to obtain the required data, significantly reducing the amount of code! ( •̀ ω •́ )✧
However, there is a troublesome issue that our lab's server is behind a router, and the router is not under my control, only the ssh port is forwarded.
Here I chose to use frp to map each server's API port to my small host on campus. Just right, my small host is configured with a lot of web services, making it easy to access the API via domain name.
I was previously stuck; actually, I could completely use ssh (ssh -fN -L 8000:localhost:8000 user@ip
) for port mapping, which would allow me to remove the frp-related code and make it easier to start the web end using docker.
# main.py
from fastapi import FastAPI, Request
from fastapi.middleware.cors import CORSMiddleware
from fastapi.middleware.gzip import GZipMiddleware
from fastapi.responses import JSONResponse
import uvicorn
from nvitop import Device, bytes2human
import os
import asyncio
from contextlib import asynccontextmanager
suburl = os.environ.get("SUBURL", "")
if suburl != "" and not suburl.startswith("/"):
suburl = "/" + suburl
frp_path = os.environ.get("FRP_PATH", "/home/peijie/Nvidia-API/frp")
if not os.path.exists(f"{frp_path}/frpc") or not os.path.exists(
f"{frp_path}/frpc.toml"
):
raise FileNotFoundError("frpc or frpc.toml not found in FRP_PATH")
@asynccontextmanager
async def run_frpc(app: FastAPI): # frp tunnels to my small host on campus
command = [f"{frp_path}/frpc", "-c", f"{frp_path}/frpc.toml"]
process = await asyncio.create_subprocess_exec(
*command,
stdout=asyncio.subprocess.DEVNULL,
stderr=asyncio.subprocess.DEVNULL,
stdin=asyncio.subprocess.DEVNULL,
close_fds=True,
)
try:
yield
finally:
try:
process.terminate()
await process.wait()
except ProcessLookupError:
pass
app = FastAPI(lifespan=run_frpc)
app.add_middleware(GZipMiddleware, minimum_size=100)
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
@app.get(f"{suburl}/count")
async def get_ngpus(request: Request):
try:
ngpus = Device.count()
return JSONResponse(content={"code": 0, "data": ngpus})
except Exception as e:
return JSONResponse(
content={"code": -1, "data": None, "error": str(e)}, status_code=500
)
@app.get(f"{suburl}/status")
async def get_status(request: Request):
try:
ngpus = Device.count()
except Exception as e:
return JSONResponse(
content={"code": -1, "data": None, "error": str(e)}, status_code=500
)
idx = request.query_params.get("idx", None)
if idx is not None:
try:
idx = idx.split(",")
idx = [int(i) for i in idx]
for i in idx:
if i < 0 or i >= ngpus:
raise ValueError("Invalid GPU index")
except ValueError:
return JSONResponse(
content={"code": 1, "data": None, "error": "Invalid GPU index"},
status_code=400,
)
else:
idx = list(range(ngpus))
process_type = request.query_params.get("process", "")
if process_type not in ["", "C", "G", "NA"]:
return JSONResponse(
content={
"code": 1,
"data": None,
"error": "Invalid process type, choose from C, G, NA",
},
status_code=400,
)
try:
devices = []
processes = []
for i in idx:
device = Device(i)
devices.append(
{
"idx": i,
"fan_speed": device.fan_speed(),
"temperature": device.temperature(),
"power_status": device.power_status(),
"gpu_utilization": device.gpu_utilization(),
"memory_total_human": f"{round(device.memory_total() / 1024 / 1024)}MiB",
"memory_used_human": f"{round(device.memory_used() / 1024 / 1024)}MiB",
"memory_free_human": f"{round(device.memory_free() / 1024 / 1024)}MiB",
"memory_utilization": round(
device.memory_used() / device.memory_total() * 100, 2
),
}
)
now_processes = device.processes()
sorted_pids = sorted(now_processes)
for pid in sorted_pids:
process = now_processes[pid]
if process_type == "" or process_type in process.type:
processes.append(
{
"idx": i,
"pid": process.pid,
"username": process.username(),
"command": process.command(),
"type": process.type,
"gpu_memory": bytes2human(process.gpu_memory()),
}
)
return JSONResponse(
content={
"code": 0,
"data": {"count": ngpus, "devices": devices, "processes": processes},
}
)
except Exception as e:
return JSONResponse(
content={"code": -1, "data": None, "error": str(e)}, status_code=500
)
if __name__ == "__main__":
port = int(os.environ.get("PORT", "8000"))
uvicorn.run(app, host="127.0.0.1", port=port, reload=False)
There are three environment variables in the code:
SUBURL
: Used to configure the API path, such as specifying the server name.FRP_PATH
: The path where frp and its configuration are located, used to map the API port to my small host on campus. If your server can be accessed directly, remove the related functions and change the last line to0.0.0.0
, then access it via IP (or configure a domain name for each server).PORT
: The port where the API is located.
Here I only wrote two interfaces ||, actually only used one ||
/count
: Returns how many GPUs are available./status
: Returns specific status information, the returned data can be seen in the example below. However, I also wrote two optional parameters:
idx
: Comma-separated numbers to obtain the status of specified GPUs.process
: Used to filter the returned processes, I set it directly to C to only display computational tasks.
{
"code": 0,
"data": {
"count": 2,
"devices": [
{
"idx": 0,
"fan_speed": 41,
"temperature": 71,
"power_status": "336W / 350W",
"gpu_utilization": 100,
"memory_total_human": "24576MiB",
"memory_used_human": "18653MiB",
"memory_free_human": "5501MiB",
"memory_utilization": 75.9
},
{
"idx": 1,
"fan_speed": 39,
"temperature": 67,
"power_status": "322W / 350W",
"gpu_utilization": 96,
"memory_total_human": "24576MiB",
"memory_used_human": "18669MiB",
"memory_free_human": "5485MiB",
"memory_utilization": 75.97
}
],
"processes": [
{
"idx": 0,
"pid": 1741,
"username": "gdm",
"command": "/usr/lib/xorg/Xorg vt1 -displayfd 3 -auth /run/user/125/gdm/Xauthority -background none -noreset -keeptty -verbose 3",
"type": "G",
"gpu_memory": "4.46MiB"
},
{
"idx": 0,
"pid": 2249001,
"username": "xxx",
"command": "~/.conda/envs/torch/bin/python -u train.py",
"type": "C",
"gpu_memory": "18618MiB"
},
{
"idx": 1,
"pid": 1741,
"username": "gdm",
"command": "/usr/lib/xorg/Xorg vt1 -displayfd 3 -auth /run/user/125/gdm/Xauthority -background none -noreset -keeptty -verbose 3",
"type": "G",
"gpu_memory": "9.84MiB"
},
{
"idx": 1,
"pid": 1787,
"username": "gdm",
"command": "/usr/bin/gnome-shell",
"type": "G",
"gpu_memory": "6.07MiB"
},
{
"idx": 1,
"pid": 2249002,
"username": "xxx",
"command": "~/.conda/envs/torch/bin/python -u train.py",
"type": "C",
"gpu_memory": "18618MiB"
}
]
}
}
Front-end Implemented with Vue#
Here I took a shortcut ||, actually because I don't know how to ||, I temporarily copied the original UI generated with Python.
<!-- App.vue -->
<script setup>
import GpuMonitor from './components/GpuMonitor.vue';
let urls = [];
let titles = [];
for (let i = 1; i <= 5; i++) {
urls.push(`https://xxxx/status?process=C`);
titles.push(`s${i}`);
}
const data_length = 100; // Length of historical GPU utilization data for drawing line charts (first draw a pie)
const sleep_time = 500; // Interval for refreshing data, in milliseconds
</script>
<template>
<h3><a href="https://www.do1e.cn/posts/citelab/server-help">Server Usage Instructions</a></h3>
<GpuMonitor v-for="(url, index) in urls" :key="index" :url="url" :title="titles[index]" :data_length="data_length" :sleep_time="sleep_time" />
</template>
<style scoped>
body {
margin-left: 20px;
margin-right: 20px;
}
</style>
<!-- components/GpuMonitor.vue -->
<template>
<div>
<h1>{{ title }}</h1>
<article class="markdown-body">
<div v-for="device in data.data.devices" :key="device.idx">
<b>GPU{{ device.idx }}: </b>
<b>Memory: </b>
<div class="g-container">
<div class="g-progress" :style="{ width: device.memory_utilization + '%' }"></div>
</div>
<code style="width: 25ch;">{{ device.memory_used_human }}/{{ device.memory_total_human }} {{ device.memory_utilization }}%</code>
<b>Utilization: </b>
<div class="g-container">
<div class="g-progress" :style="{ width: device.gpu_utilization + '%' }"></div>
</div>
<code style="width: 5ch;">{{ device.gpu_utilization }}%</code>
<b>Temperature: </b>
<code style="width: 4ch;">{{ device.temperature }}°C</code>
</div>
<table v-if="data.data.processes.length > 0">
<thead>
<tr><th>GPU</th><th>PID</th><th>User</th><th>Command</th><th>GPU Usage</th></tr>
</thead>
<tbody>
<tr v-for="process in data.data.processes" :key="process.pid">
<td>GPU{{ process.idx }}</td>
<td>{{ process.pid }}</td>
<td>{{ process.username }}</td>
<td>{{ process.command }}</td>
<td>{{ process.gpu_memory }}</td>
</tr>
</tbody>
</table>
</article>
</div>
</template>
<script>
import axios from 'axios';
import { Chart, registerables } from 'chart.js';
Chart.register(...registerables);
export default {
props: {
url: String,
title: String,
data_length: Number,
sleep_time: Number
},
data() {
return {
data: {
code: 0,
data: {
count: 0,
devices: [],
processes: []
}
},
gpuUtilHistory: {}
};
},
mounted() {
this.fetchData();
this.interval = setInterval(this.fetchData, this.sleep_time);
},
beforeDestroy() {
clearInterval(this.interval);
},
methods: {
fetchData() {
axios.get(this.url)
.then(response => {
if (response.data.code !== 0) {
console.error('Error fetching GPU data:', response.data);
return;
}
this.data = response.data;
for (let device of this.data.data.devices) {
if (!this.gpuUtilHistory[device.idx]) {
this.gpuUtilHistory[device.idx] = Array(this.data_length).fill(0);
}
this.gpuUtilHistory[device.idx].push(device.gpu_utilization);
this.gpuUtilHistory[device.idx].shift();
}
})
.catch(error => {
console.error('Error fetching GPU data:', error);
});
}
}
};
</script>
<style>
.g-container {
width: 200px;
height: 15px;
border-radius: 3px;
background: #eeeeee;
display: inline-block;
}
.g-progress {
height: inherit;
border-radius: 3px 0 0 3px;
background: #6e9bc5;
}
code {
display: inline-block;
text-align: right;
background-color: #ffffff !important;
}
</style>
// main.js
import { createApp } from 'vue'
import App from './App.vue'
createApp(App).mount('#app')
<!DOCTYPE html>
<html lang="">
<head>
<meta charset="UTF-8">
<link rel="icon" href="/favicon.ico">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/github-markdown-css/5.2.0/github-markdown.min.css">
<title>Laboratory GPU Usage</title>
</head>
<body>
<div id="app"></div>
<script type="module" src="/src/main.js"></script>
</body>
</html>
npm run build
successfully obtained the release files, and configuring the nginx root to that folder completed the task.
The achieved effect: https://nvtop.nju.do1e.cn/
Although the UI is still ugly, at least it can refresh dynamically, yay!
New UI#
I'll draw the pie chart here, waiting for my return with skills. ( ̄_, ̄ )
[x] More aesthetically pleasing UI(I'm not sure if this has been achieved, I'm a design failure)
[x] Added utilization line chart
[x] Supports night mode
2024/12/27: Used nextjs to complete the above TODOs, and also implemented the function to hide certain hosts, setting hidden hosts as cookies for easy display of the same state next time.
2025/03/11: nextjs updated the email login feature, access limited to authorized users.
Complete code can be found in the repository below: